Skip to content

Miscellaneous Proofs

Tags
Cegep1
Calculus
Word count
2176 words
Reading time
14 minutes

limx0sinxx=1

Proof 1

where x(0,π2) is the angle between the x-axis and the line OC.
This creates the following inequality:

ADOBAsector DOBACOB

ADOB

The base, OB, and the hypotenuse, DO, are radii of the unit circle, so they have length 1.

For the height,

DA=sinxDO=sinx1=sinx

Then,

ADOB=bh2=sinx2

Asector DOB

Asector DOB=12r2θ=x2

ACOB

CB=tanxOB=tanx1=tanx

Then,

ACOB=bh2=tanx2

Therefore, we have

ADOBAsector DOBACOBsinx2x2tanx2

Since x(0,π2), we consider x0+.
Multiplying through by 2sinx>0 yields

1xsinx1cosx

Taking reciprocals gives

cosxsinxx1limx0+cosxlimx0+sinxxlimx0+11limx0+sinxx1

by the Squeeze Theorem,

limx0+sinxx=1

For x0, since sinxx is an even function as demonstrated below

sinxx=sinxx=sinxx

It follows that limx0sinxx=1.
Hence,

limx0sinxx=1

Derivative of a constant

[!abstract] ddxc=0 for cR

Let f(x)=c, then

f(x)=limh0f(x+h)f(x)h=limh0cch=limh00h=limh00=0

Derivative of function times a constant

[!abstract]+
Let cR and f be a differentiable function, then

ddx(cf(x))=cddxf(x)

Let g(x)=cf(x), then

ddx(cf(x))=g(x)=limh0g(x+h)g(x)h=limh0cf(x+h)cf(x)h=climh0f(x+h)f(x)h=cf(x)

Derivative of sum / difference

[!abstract]+
Let f and g be differentiable functions, then

ddx(f(x)±g(x))=ddxf(x)±ddxg(x)

Let s(x)=f(x)±g(x), then

ddx(f(x)±g(x))=s(x)=limh0s(x+h)s(x)h=limh0(f(x+h)±g(x+h))(f(x)±g(x))h=limh0(f(x+h)f(x))±(g(x+h)g(x))h=limh0f(x+h)f(x)h±limh0g(x+h)g(x)h=f(x)±g(x)

Derivative of sinx

[!abstract] ddxsinx=cosx

Let f(x)=sinx.

f(x)=limh0f(x+h)f(x)h=limh0sin(x+h)sinxh

Using the sine rule for sums,

=limh0sinxcosh+cosxsinhsinxh=limh0sinx(cosh1)+cosxsinhh=limh0sinx(cosh1)h+limh0cosxsinhh=sinxlimh0cosh1h+cosxlimh0sinhh=cosx

Derivative of cosx

[!abstract] ddxcosx=sinx

Let f(x)=sinx.

f(x)=limh0f(x+h)f(x)h=limh0cos(x+h)cosxh

Using the cosine rule for sums,

=limh0cosxcoshsinxsinhcosxh=limh0cosx(cosh1)sinxsinhh=limh0cosx(cosh1)hlimh0sinxsinhh=cosxlimh0cosh1hsinxlimh0sinhh=sinx

Derivative of tanx

[!abstract] ddxtanx=sec2x

ddxtanx=ddxsinxcosx=cosx(sinx)sinx(cosx)cos2x=cosxcosx+sinxsinxcos2x=cos2x+sin2xcos2x=1cos2x=sec2x

Derivative of secx

[!abstract] ddxsecx=secxtanx

ddxsecx=ddx1cosx=cosx(1)(cosx)cos2x=cosx0(sinx)cos2x=sinxcos2x=1cosxsinxcosx=secxtanx

Derivative of cscx

[!abstract] ddxcscx=cscxcotx

ddxcscx=ddx1sinx=sinx(1)(sinx)sin2x=sinx0cosxsin2x=cosxsin2x=1sinxcosxsinx=cscxcotx

Derivative of cotx

[!abstract] ddxcotx=csc2x

ddxcotx=ddxcosxsinx=sinx(cosx)cosx(sinx)sin2x=sin2xcos2xsin2x=sin2x+cos2xsin2x=1sin2x=csc2x

Derivative of arcsinx

[!abstract] ddxarcsinx=11x2

Let y=arcsinx so x=siny.
Note that the range of y=arcsinx is y[π2,π2].
Using implicit differentiation, we have

x=sinyddxx=ddxsiny1=cosyyy=1cosy

We use sin2y+cos2y=1|cosy|=1sin2y. Since y[π2,π2], cosy0.
Then,

=11sin2y=11x2

Derivative of arccosx

[!abstract] ddxarccosx=11x2

Let y=arccosx so x=cosy.
Note that the range of y=arccosx is y[0,π].
Using implicit differentiation, we have

x=cosyddxx=ddxcosy1=sinyyy=1siny

We use sin2y+cos2y=1|siny|=1cos2y. Since y[0,π], siny0.
Then,

=11cos2y=11x2

Derivative of arctanx

[!abstract] ddxarctanx=11+x2

Let y=arctanx so x=tany. Using implicit differentiation, we have

x=tanyddxx=ddxtany1=sec2yyy=1sec2yy=11+tan2yy=11+x2

Derivative of arcsecx

[!abstract] ddxarcsecx=1|x|x21

Let y=arcsecx so x=secy, equivalently cosy=1x.
Note that the range and domain of y=arcsecx are y[0,π2)(π2,π] and x(,1][1,), respectively.
Using implicit differentiation, we have

cosy=1xddxcosy=ddx1xsinyy=1x2y=1x2siny

We use sin2y+cos2y=1|siny|=1cos2y. Since y[0,π2)(π2,π], siny0.
Then,

=1x21cos2y=1x211x2=1x2x21x2=1x21|x|x21

If x(,1] (i.e. negative values), then |x|=x and x2|x|=x. If x[1,) (i.e. positive values), then |x|=x and x2|x|=x. In both cases, x2|x|=|x|, hence

=1|x|x21

Derivative of arccscx

[!abstract] ddxarccscx=1|x|x21

Let y=arccscx so x=cscy, equivalently siny=1x.
Note that the range and domain of y=arccscx are y[π2,0)(0,π2] and x(,1][1,), respectively.
Using implicit differentiation, we have

siny=1xddxsiny=ddx1xcosyy=1x2y=1x2cosy

We use sin2y+cos2y=1|cosy|=1sin2y. Since y[π2,0)(0,π2], cosy0.
Then,

=1x21sin2y=1x211x2=1x2x21x2=1x21|x|x21

If x(,1] (i.e. negative values), then |x|=x and x2|x|=x. If x[1,) (i.e. positive values), then |x|=x and x2|x|=x. In both cases, x2|x|=|x|, hence

=1|x|x21

Derivative of arccotx

[!abstract] ddxarccotx=11+x2

Let y=arccotx so x=coty. Using implicit differentiation, we have

x=cotyddxx=ddxcoty1=csc2yyy=1csc2yy=11+cot2yy=11+x2

Derivative of logbx

[!abstract] ddxlogbx=1xlnb

Note that

limn(1+1n)nlimm0(1+m)1/m=e

Let f(x)=logbx, then

f(x)=limh0f(x+h)f(x)h=limh0logb(x+h)logbxh=limh0(1hlogbx+hx)=limh0(1hlogb(1+hx))=limh0(1xxhlogb(1+hx))=1xlimh0logb(1+hx)x/h

Since logb is continuous,

=1xlogblimh0(1+hx)x/h=1xlogblimh0(1+hx)1/(h/x)

Using definition of e with m=hx,

=1xlogbe

Using the change of base rule,

=1xlnelnb=1xlnb

Derivative of ax

[!abstract] ddxax=axlna

Let y=ax so x=logay. Using implicit differentiation, we have

x=logayddxx=ddxlogay1=1ylnayy=ylnay=axlna

Differentiability implies continuity

We have to show that f(a)=limxaf(x). We know that f is differentiable at a, so

f(a)=limxaf(x)f(a)xa

is certain to exist.
Then,

f(x)=limxaf(x)f(a)xaf(x)=limxa(f(x)f(a))limxa(xa)f(x)limxa(xa)=limxa(f(x)f(a))f(x)0=limxaf(x)limxaf(a)limxaf(a)=limxaf(x)f(a)=limxaf(x)

The contrapositive of the theorem says non-continuity $\implies$ non-differentiability.

The converse is not necessarily true, i.e. continuity doesn't imply differentiability.

Constant on interval when derivative is 0

[!abstract] If f(x)=0 x(a,b), then f is constant on (a,b).

We want to show that for any x1,x2(a,b) where x1<x2, f(x1)=f(x2).
Since f is differentiable on (a,b), it must be differentiable on (x1,x2) and continuous on [x1,x2].
by M. V. T., c(x1,x2) such that

Δf(x)=f(c)Δx

Since f(x)=0 x(a,b), we have

Δf(x)=0f(x2)=f(x1)

Therefore, f has the same value at any two numbers x1 and x2 in (a,b). This means that f is constant on (a,b).

Contributors

Changelog