Skip to content

Derivative

Taylor Series

Tags
Cegep1
Calculus
Word count
306 words
Reading time
2 minutes

Series of polynomials used to approximate functions
The Taylor polynomial of degree n at x=a is

Pn(x)=i=0nf(i)(a)i!(xa)i

Extension of linear approximation

$a$ is called the **center of approximation**.

[!abstract] Maclaurin Polynomial
Taylor Polynomial where a=0

Examples

Estimate f(x)=arctanx at x=0.

n0123
f(n)(x)arctanx11+x22x(1+x2)22(3x21)(1+x2)3
f(n)(1)π4121212

So,

P3(x)=f(0)(1)0!(x1)0+f(1)(1)1!(x1)1+f(2)(1)2!(x1)2+f(3)(1)3!(x1)3=π4+12(x1)14(x1)2+112(x1)3P3(0)=π4+12(01)14(01)2+112(01)3=π41214112=3π1012

Use the degree 5 Maclaurin polynomial of f(x)=ln(1x) to approximate ln2.

n012345
f(n)(x)ln(1x)11x1(1x)22(1x)323(1x)4234(1x)5
f(n)(0)0112624

So,

P5(x)=f(0)(0)0!x0+f(1)(0)1!x1+f(2)02!x2+f(3)(0)3!x3+f(4)(0)4!x4+f(5)(0)5!x5=xx22!2x33!6x44!24x55!

Note that ln2=f(1), then

f(1)P5(1)=(1)(1)22!2(1)33!6(1)44!24(1)55!=4760=0.783

Contributors

Changelog