Skip to content
Hifumi's Study Notes
Search
K
Main Navigation
Home
Notes
Changelog
Switch theme
Share
Menu
Return to top
Outline
Hifumi's Study Notes
📕Cegep 1
Mathematics
Rewriting Trigonometric Functions
Rewriting Trigonometric Functions
Tags
Cegep1
Mathematics
Word count
299 words
Reading time
2 minutes
cos
(
arcsin
(
x
+
1
)
)
Let
θ
=
arcsin
(
x
+
1
)
sin
θ
=
x
+
1
Let
c
=
adjacent side of
θ
1
2
=
c
2
+
(
x
+
1
)
2
c
2
=
1
−
(
x
+
1
)
2
c
=
±
1
−
(
x
+
1
)
2
Note that
cos
θ
≥
0
&
cos
θ
=
c
1
=
c
∴
c
>
0
cos
(
arcsin
(
x
+
1
)
)
=
cos
θ
=
c
=
1
−
(
x
+
1
)
2
sin
(
2
arccos
(
e
x
)
)
Let
θ
=
arccos
(
e
x
)
cos
θ
=
e
x
Let
c
=
opposite side of
θ
1
2
=
c
2
+
(
e
x
)
2
c
2
=
1
−
e
2
x
c
=
±
1
−
e
2
x
Note that
sin
θ
≥
0
and
sin
θ
=
c
1
=
c
∴
c
>
0
sin
(
2
arccos
(
e
x
)
)
=
sin
(
2
θ
)
=
2
sin
θ
cos
θ
=
2
c
e
x
=
2
1
−
e
2
x
e
x
sec
(
arctan
(
1
x
)
)
Let
θ
=
arctan
(
1
x
)
tan
θ
=
1
x
Thus
1
=
opposite side of
θ
x
=
adjacent side of
θ
Let
c
=
hypotenuse of
θ
Per Pythagorean Theorem,
c
=
1
2
+
x
2
Since
sec
θ
>
0
and
sec
θ
=
c
x
,
c
x
>
0
Note that
x
≠
0
because
1
x
is defined
Thus,
x
>
0
⟹
c
>
0
&
x
<
0
⟹
c
<
0
sec
(
arctan
(
1
x
)
)
=
sec
θ
=
c
x
=
{
1
+
x
2
x
x
>
0
−
1
+
x
2
x
x
<
0
Contributors
Ajitani Hifumi
Changelog
Last edited 3 months ago
View full history
2717122
-
Vault update: 2024-09-17T19:29:48
a5a8612
-
Vault update: 2024-09-04T09:29:44
2f2a90b
-
Vault update: 2024-09-02 18:50:33
3c88ffc
-
A new start