Skip to content

%% derivative %%

Power Rule

Tags
Calculus
Cegep/1
Word count
225 words
Reading time
2 minutes

Let f(x)=xnnR, then

ddxxn=nxn1

General Power Rule

Let f be a differentiable function and h(x)=(f(x))n for nR, then

h(x)=ddx(f(x))n=n(f(x))n1f(x)

Proof

For now, this proof is only for $n \in \mathbb{N}$.

Note the fact that the following equality is true:

xnan=(xa)i=1nxniai1

Let f(x)=xn, we have to show that f(a)=nan1 for any a:

f(a)=limh0f(a+h)f(a)h=limxaf(x)f(a)xa=limxaxnanxa

Using the fact stated above, we have

=limxa(xa)i=1nxniai1xa=limxai=1nxniai1=i=1naniai1=i=1nan1=nan1

Contributors

Changelog