Skip to content

Riemann Sum

Tags
Calculus
Cegep/2
Word count
421 words
Reading time
3 minutes

Approximation of a region's area by summing rectangles

The Riemann sum of y=f(x) on [a,b] obtained using n rectangles and right endpoints:

Rn=i=1nAi=i=1nf(a+iban)ban

Evaluation

Evaluate the area under f(x)=5x+2 on [0,3].

A=limni=1nf(xi)Δx=limni=1n(5(3in)+2)(3n)=limn3n(15nn(n+1)2+2n)=limn(45(n+1)2n+6)=452+6=572

Evaluate the area under f(x)=x22x5 on [1,4].

A=limni=1nf(xi)Δx=limni=1n((1+(41)in)22(1+(41)in)5)(41n)=limn3ni=1n(1+6in+9i2n226in5)=limn3ni=1n(9i2n26)=limn3n(9n2n(n+1)(2n+1)66n)=limn(9(n+1)(2n+1)2n218)=92218=9

Use a limit of Riemann sums to compute 31(5x2)dx.

31(5x2)dx=limni=1n(5(3+1+3ni)2)(1+3n)=limni=1n16+96ni64n2i2n=limn(16+96n2i64n3i2)=limn(16+96n2n(n+1)264n3n(n+1)(2n+1)6)=16+9626426=323

Contributors

Changelog