Skip to content

Differential Equation

Tags
Calculus
Cegep/2
Word count
639 words
Reading time
4 minutes

Equation involving a function and some of its derivatives

[!abstract] Particular solution
Function f that satisfies the DE when f and its derivatives are substituted into the DE

[!abstract] General solution
General antiderivative of the particular solution

[!abstract]+ Separable differential equation
DE in which it is possible to factor the derivative dydx as a function of x(h(x)) times a function of y(g(y))

dydx=h(x)g(x)

[!example]+

  • y+3y=5y
  • x(t)=ω2x(t) (simple harmonic motion)
  • dPdt=kP(t) (exponential growth)

Examples

Show that the function y=5e2x+3ex is a solution to the DE y3y=2y.

y=5e2x+3exy=10e2x+3exy=20e2x+3exy3y=20e2x+3ex3(10e2x+3ex)=20e2x+3ex30e2x9ex=10e2x6ex=2(5e2x+3ex)=2y

Therefore, y is a solution to the DE.

Consider dydx=(2x1)(1). Find the function y that passes through the point P(1,0).

dydx=(2x1)(1)dy=(2x1)dxdy=(2x1)dxy=x2x+C

Substituting the coordinates into the general solution gives

0=121+CC=0y=x2x

Consider dydx=x2y2. Find the function y that passes through the point P(1,0).

dydx=x2y2y2dy=x2dxy2dy=x2dx13y3=13x3+Cy3=x3+3Cy=x3+3C3

Substituting the coordinates into the general solution gives

2=03+3C3C=83y=x3+83

Find the particular solution to yx2=y at (3,1).

yx2=ydydxx2=ydydx=x2y1ydy=x2dxln|y|=x33+Celn|y|=ex33+C|y|=ex33+Cy=±ex33+C

Substituting the coordinates gives

ln|1|=333+CC=9y=±ex339

Verifying the positive solution:

1=e33391=e01=1

Verifying the negative solution:

1=e33391=e01=1

Therefore, the particular solution is y=ex339.

Solve dpdt=t2pp+t21.

dpdt=t2pp+t21=p(t21)+t21=(p+1)(t21)1p+1dp=(t21)dtln|p+1|=t33t+C|p+1|=et33t+Cp=±et33t+C1

Solve dzdt+et+z=0.

dzdt+et+z=0dzdt=etezezdz=etdtez=et+Cz=ln(etC)

Contributors

Changelog