Skip to content

Geometric series

Tags
Calculus
Cegep/2
Word count
339 words
Reading time
3 minutes

Series of a geometric sequence

SN=n=1Narn1limNSN={a1rif |r|<1DNEif |r|1

Examples

Determine if the geometric series converges or diverges. If it converges, find the value:

n=13n15n+1

n=13n15n+1=n=1(152)(3n15n1)=n=1(125)(35)n1

Since |35|<1, the geometric series is convergent.

=125135=110

n=3enπn2

n=3enπn2=n=3(eπ)(en1πn1)=n=3(eπ)(eπ)n1=n=1n(eπ)(eπ)n1eπ(eπ)2

Since |eπ|<1, the geometric series is convergent.

=eπ1eπeπ(eπ)2=eπeeπ(eπ)2

n=122n31n

n=122n31n=n=144n113n1=n=1443n1

Since |43|1, the geometric series is divergent.

Contributors

Changelog