Skip to content

Definite Integral

Tags
Calculus
Cegep/2
Word count
588 words
Reading time
4 minutes

Area under a curve between two boundaries

The definite integral of f on [a,b] is

abf(x)dx=limni=1nf(xi)Δx

Derived from Riemann sum

Properties

  • abkdx=k(ba)
  • aaf(x)dx=0
  • abf(x)dx=baf(x)dx
  • abf(x)dx+bcf(x)dx=acf(x)dx
  • Integration maintains inequality:
    • f(x)0abf(x)dx0
    • f(x)g(x)abf(x)dxabg(x)dx
    • mf(x)Mm(ba)abf(x)dxM(ba)
  • For an even function f, aaf(x)dx=20af(x)dx
  • For an odd function f, aaf(x)dx=0

Examples

Suppose 01f(x)dx=2, 12f(x)dx=3, 01g(x)dx=1, and 02g(x)dx=4. Compute the following.

12g(x)dx

12g(x)dx=02g(x)dx01g(x)dx=4+1=5

02(2f(x)3g(x))dx

02(2f(x)3g(x))dx=202f(x)dx302g(x)dx=2(01f(x)dx+12f(x)dx)34=2(2+3)12=2

11g(x)dx

11g(x)dx=0

Simplify the following expressions.

22f(x)dx+25f(x)dx21f(x)dx

22f(x)dx+25f(x)dx21f(x)dx=15f(x)dx

023f(x)dx+133f(x)dx022f(x)dx123f(x)dx232f(x)dx

023f(x)dx+133f(x)dx022f(x)dx123f(x)dx232f(x)dx=023f(x)dx+233f(x)dx032f(x)dx=303f(x)dx203f(x)dx=03f(x)dx

Let f(x) be an even function such that 023f(x)dx=6 and 12f(x)dx=5. Find 21f(x)dx.

023f(x)dx=6202f(x)dx=422f(x)dx=421f(x)dx=1

Show that 1171211+x4dx12.

11+2411+x411+14 on [1,2]117(21)1211+x4dx12(21)

Find a definite integral that represents limni=1n2ne(4i2n2+4in+1).

02e(x+1)2dx

Contributors

Changelog