Skip to content

Maclaurin Series

Tags
Calculus
Cegep/1
Cegep/2
Word count
402 words
Reading time
3 minutes

Taylor series where a=0

f(x)=n=0f(n)(0)n!xn

Examples

Find the Maclaurin series of the following functions:

cosx

cosx=10!x0+0+12!x2+0+14!x4+0+=112!x2+14!x4+=n=0(1)nx2n(2n)!

Knowing that arctanx=n=0(1)nx2n+12n+1,

a. Find a Maclaurin series for arctanx2.

arctanx=n=0(1)nx2n+12n+1arctanx2=n=0(1)nx4n+22n+1=n=0(1)nx3n+2n!2n+1n!xn

b. Find a series expansion for F(x)=0xarctant2dt.

F(x)=0xn=0(1)nt3n+2n!2n+1n!tndt=n=00x(1)nt3n+2n!2n+1n!tndt=n=0((1)n2n+10xt4n+2dt)=n=0((1)n2n+1x4n+34n+3)=n=0(1)nx4n+3(2n+1)(4n+3)=x313x737+x11511

Use the degree 5 Maclaurin polynomial of f(x)=ln(1x) to approximate ln2.

n012345
f(n)(x)ln(1x)11x1(1x)22(1x)323(1x)4234(1x)5
f(n)(0)0112624

So,

P5(x)=f(0)(0)0!x0+f(1)(0)1!x1+f(2)02!x2+f(3)(0)3!x3+f(4)(0)4!x4+f(5)(0)5!x5=xx22!2x33!6x44!24x55!

Note that ln2=f(1), then

f(1)P5(1)=(1)(1)22!2(1)33!6(1)44!24(1)55!=4760=0.783

Contributors

Changelog