Skip to content

Ratio Test

Tags
Calculus
Cegep/2
Word count
283 words
Reading time
2 minutes

Test to determine whether a series diverges

  1. If limn|an+1an|>1, then ar is divergent.
  2. If limn|an+1an|<1, then ar is convergent.
  3. If limn|an+1an|=1, then the test is inconclusive.

Especially applied to series with factorial

Examples

Determine if the following series are convergent:

n=15nn!

limn|an+1an|=limn|5(n+1)(n+1)!n!5n|=limn|n!(n+1)!5(n+1)5n|=limn|n+1(n+1)n|=0<1

Therefore, an is convergent by RT.

n=12nn!(3n)(2n)!

limn|2n+1(n+1)!(3(n+1))(2(n+1))!(3n)(2n)!2nn!|=limn|2n+12n(n+1)!n!3n3n+3(2n)!(2n+2)!|=limn|2(n+1)(3n)(3n+3)(2n+2)(2n+1)|=0<1

Therefore, an is convergent by RT.

n=14(n!)2(2n)!

limn|4((n+1)!)2(2(n+1))!(2n)!4(n!)2|=limn|4((n+1)!)24(n!)2(2n)!(2n+2)!|=limn|(n+1)2(2n+2)(2n+1)|=14<1

Therefore, an is convergent by RT.

Contributors

Changelog