Skip to content

Trigonometric Substitution

Tags
Calculus
Cegep/2
Word count
697 words
Reading time
5 minutes

Method of reversing applications of Pythagorean Theorem to find the antiderivative:

  • a2x2:
    • Let x=asinθ, then a2cos2θ
    • Let x=acosθ, then a2sin2θ
  • a2+x2:
    • Let x=atanθ, then a2sec2θ
    • Let x=acotθ, then a2csc2θ
  • x2a2:
    • Let x=asecθ, then a2tan2θ
    • Let x=acscθ, then a2cot2θ

Proof

a2x2 for a>0

Let x=asinθ, then θ=arcsinxa.

a2x2=a2(asinθ)2=a2a2sin2θ=a2(1sin2θ)=a2cos2θ

Because cosθ0 for θ[π2,π2],

=acosθ

a2+x2 for a>0

Let x=atanθ, then θ=arctanxa.

a2+x2=a2+(atanθ)2=a2+a2tan2θ=a2(1+tan2θ)=a2sec2θ=asecθ

x2a2 for a>0

Let x=asecθ, then θ=arcsecxa.

x2a2=(asecθ)2a2=a2sec2θa2=a2(sec2θ1)=a2tan2θ=atanθ

Examples

Evaluate the following integrals.

1(x2+9)32dx

Let x=3tanθ, then dx=3sec2θdθ.
By trig substitution,

1(x2+9)32dx=1x2+93dx=3sec2θ(3secθ)3dθ=191secθdθ=19cosθdθ=19sinθ+C=19(xx2+9)+C

x22x3dx

Let x=2secθ, then dx=2secθtanθdθ.
By trig substitution,

x22x3dx=2tanθ(2secθ)32secθtanθdθ=12tan2θsec2θdθ=12sin2θdθ=1212(1cos2θ)dθ=122(θsin2θ2)+C=122arcsecx2sinθcosθ+C=122(arcsecx2(x22x)(2x))+C

16x2dx

Let x=4sinθ, then dx=4cosθdθ.
By trig substitution,

16x2dx=4cosθ4cosθdθ=8(1+cos2θ)dθ=8(θ+sin2θ2)+C=8(arcsinx4+(x4)(16x24))+C

1x25+x2dx

Let x=5tanθ, then dx=5sec2θdθ.
By trig substitution,

1x25+x2dx=15tan2θ5secθdθ=15secθtan2θdθ=15cosθsin2θdθ

Let u=sinθ, then du=cosθdθ.
By substitution,

=151u2du=15(1sinθ)+C=15(x2+5x)+C

xx27dx

Let x=7secθ, then dx=7tanθsecθdθ.
By trig substitution,

xx27dx=7secθ7tanθ7tanθsecθdθ=7sec2θdθ=7tanθ+C=x27+C

ln(arcsint)1t2dt

Let t=sinθdt=cosθdθ.

ln(arcsint)1t2dt=ln(arcsin(sinθ))cosθcosθdθ=lnθdθ=θlnθθ+C=arcsintln(arcsint)arcsint+C

Contributors

Changelog