Skip to content

Indefinite Integral

Tags
Calculus
Cegep/2
Word count
344 words
Reading time
3 minutes

General form of all antiderivatives of a function

Properties

  • 0dx=C
  • kf(x)dx=kf(x)dx
  • (f(x)±g(x))dx=f(x)dx±g(x)dx
  • xndx=xn+1n+1+C for n1
  • x1dx=ln|x|+c for x0
  • axdx=axlna+C
  • cosxdx=sinx
  • sinxdx=cosx
  • sec2xdx=tanx
  • tanxsecxdx=secx
  • cotxcscxdx=cscx
  • csc2xdx=cotx
  • 11x2dx=arcsinx=arccosx
  • 1|x|x21dx=arcsecx=arccscx
  • 11+x2dx=arctanx=arccotx
  • ==lnxdx=xlnxx+C==
  • ==tanxdx=lnsec|x|+C==
  • ==secxdx=ln|secx+tanx|+C==

Examples

Evaluate the following indefinite integrals.

(cosx+5sinx3x)dx=sinx5cosx3xln3+Cx23x+2x322x32dx=12(x123x1+2)dx=12(x32323ln|x|+2x)+C2xcos(x2+3)dx=sin(x2+3)+C

sin4xdx

sin4xdx=(12(1cos(2x)))2dx=14(12cos(2x)+cos2(2x))dx=14(12cos(2x)+12(1+cos(2x)))dx=14(3234cos(2x))dx=14(32x38sin(2x))+C=38x332sin(2x)+C

Contributors

Changelog