Skip to content

u-Substitution

Tags
Calculus
Cegep/2
Word count
719 words
Reading time
5 minutes

Method of reversing an application of chain rule to find the antiderivative

To find the antiderivative of f(x)=g(A)udx,

  1. Let u=A.
  2. Find dudx.
  3. Substitute u into A and du into udxf(x)=g(u)du.
  4. Integrate G(u)+C.
  5. Back-substitute A into uG(A)+C.

The limits of integration must be adjusted when using substitution on a definite integral.

Examples

Evaluate the following integrals.

2x(x21)4dx

Let u=x21, then du=2xdx.
Using substitution, we get u4du.
Finding the antiderivative gives u55+C.
Using back-substitution, we get (x21)55+C.

ex4(4x3)dx

Let u=x4, then du=4x3dx.

ex4(4x3)dx=eudu=eu=ex4+C

cotxcsc2xdx

Let u=cotx, then du=csc2xdx.

cotxcsc2xdx=udu=2u323+C=2(cotx)323+C

etan2xsec22xdx

Let u=tan2x, then du=sec22x2dx.

etan2xsec22xdx=12eudu=12eu=12etan2x+C

2x+3(2x2+6x+5)32dx

Let u=2x2+6x+5, then

du=(4x+6)dxdu2=(2x+3)dx

Using substitution,

2x+3(2x2+6x+5)32dx=12duu32=15u52=15(2x2+6x+5)52+C

sec3xtanxdx

Let u=secx, then du=secxcosxdx.

sec3xtanxdx=u2du=u33+C=sec3x3+C

sin2xcos2xdx

sin2xcos2xdx=14(1cos(2x))(1+cos(2x))dx=14(1cos2(2x))dx=14x14cos2(2x)dx=14x14(12)(1+cos(4x))dx=14x18x18cos(4x)dx=18x132sin(4x)+C

tan2xdsec2x

tan5xsec7x=dxtan4xsec6secxtanxdx=(sec2x1)2sec6xsecxtanxdx

Let u=secx, then du=secxtanxdx.
By substitution,

=(u21)2du=(u42u2+1)du=(u102u8+u6)du=111sec11x29sec9x+17sec7x+C

tan3xdx

tan3xdx=(sec2x1)tanxdx=sec2xtanxdxtanxdx

Let u=tanx, then du=sec2xdx.
By substitution,

=uduln|secx|+C=12tan2xln|secx|+C

tan5θcos9θdθ

tan5θcos9θdθ=sin5θcos14θdθ

Let u=cosθdu=sinθdθ.

=(1u2)2u14du=u142u12+u10du=u13132u1111+u99+C=113cos13θ211cos11θ+19cos9θ+C

28x1(log8x)2dx

Let u=log8xdu=1ln8xdx.

28x1(log8x)2dx=log82log88u2ln8du=ln8[2u]log82log88=ln8(2log882log82)=4ln83

Contributors

Changelog